
Informatik - Exercise Session
Classes and Iterators



Classes vs. structs

What is the difference between a class und struct?

The only difference is the default visibility of members: A struct has default visibility
public, a class has default visibility private:

class PrivateAccess {

int a;

};
is the same as

struct PrivateAccess {

private:

int a;

};

Or the other way around:

class PublicAccess {

public:

int a;

};

is the same as

struct PublicAccess {

int a;

};

1



Classes vs. structs

What is the difference between a class und struct?

The only difference is the default visibility of members: A struct has default visibility
public, a class has default visibility private:

class PrivateAccess {

int a;

};
is the same as

struct PrivateAccess {

private:

int a;

};

Or the other way around:

class PublicAccess {

public:

int a;

};

is the same as

struct PublicAccess {

int a;

};

1



Classes vs. structs

What is the difference between a class und struct?

The only difference is the default visibility of members: A struct has default visibility
public, a class has default visibility private:

class PrivateAccess {

int a;

};
is the same as

struct PrivateAccess {

private:

int a;

};

Or the other way around:

class PublicAccess {

public:

int a;

};

is the same as

struct PublicAccess {

int a;

};

1



Classes vs. structs

What is the difference between a class und struct?

The only difference is the default visibility of members: A struct has default visibility
public, a class has default visibility private:

class PrivateAccess {

int a;

};
is the same as

struct PrivateAccess {

private:

int a;

};

Or the other way around:

class PublicAccess {

public:

int a;

};

is the same as

struct PublicAccess {

int a;

};

1



When to use . vs ::

The double colon :: operator was exclusively used to access members of other
namespaces until now, like in std::cout.

It is also used to access members
of classes or structs:

class Foo {

void bar();

}

void Foo::bar() {

// ...

}

This is not the same as the dot . operator,
which is used to access members of objects
(instances of classes):

int main() {

Foo f = Foo();

f.bar();

}

2



When to use . vs ::

The double colon :: operator was exclusively used to access members of other
namespaces until now, like in std::cout.

It is also used to access members
of classes or structs:

class Foo {

void bar();

}

void Foo::bar() {

// ...

}

This is not the same as the dot . operator,
which is used to access members of objects
(instances of classes):

int main() {

Foo f = Foo();

f.bar();

}

2



When to use . vs ::

The double colon :: operator was exclusively used to access members of other
namespaces until now, like in std::cout.

It is also used to access members
of classes or structs:

class Foo {

void bar();

}

void Foo::bar() {

// ...

}

This is not the same as the dot . operator,
which is used to access members of objects
(instances of classes):

int main() {

Foo f = Foo();

f.bar();

}

2



Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin()

points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end()

points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it

accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it

advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm


Iterators

https://en.cppreference.com/w/cpp/container lists all containers in the C++
standard library (e.g. list, set, unordered set, . . . ).

https://en.cppreference.com/w/cpp/algorithm lists all algorithms in the C++
standard library (e.g. max, max element, sort, . . . ).

Iterators are used to move through (→ “iterate” over) elements in a container without
knowing how the data is stored. Usage:

▶ it = c.begin() points to the first element.

▶ it = c.end() points behind the last element.

▶ *it accesses the element where the iterator currently points.

▶ ++it advances the iterator by one element.

3

https://en.cppreference.com/w/cpp/container
https://en.cppreference.com/w/cpp/algorithm

