
Informatik - Exercise Session
Characters and Recursion1

1Recursion, see 1

Characters - Useful to know

All ASCII characters (char) can be treated as

8-bit integers (for our purposes).

To append a single element to the end of a vector, use:

auto vec = std::vector<char>();

char c = ?;

vec.push_back(c);

1

Characters - Useful to know

All ASCII characters (char) can be treated as 8-bit integers (for our purposes).

To append a single element to the end of a vector, use:

auto vec = std::vector<char>();

char c = ?;

vec.push_back(c);

1

Characters - Useful to know

All ASCII characters (char) can be treated as 8-bit integers (for our purposes).

To append a single element to the end of a vector, use:

auto vec = std::vector<char>();

char c = ?;

vec.push_back(c);

1

Characters - Useful to know

All ASCII characters (char) can be treated as 8-bit integers (for our purposes).

To append a single element to the end of a vector, use:

auto vec = std::vector<char>();

char c = ?;

vec.push_back(c);

1

ASCII

Excerpt of an ASCII table (the rest are unprintable control sequences or special
characters):
int char int char int char int char int char int char

32 48 0 64 @ 80 P 96 ‘ 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q
34 ” 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 V 102 f 118 v
39 ’ 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 x
41) 57 9 73 I 89 Y 105 i 121 y
42 * 58 : 74 J 90 Z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 l 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 ˆ 110 n 126 ˜
47 / 63 ? 79 O 95 111 o 127 DEL

2

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).

3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.

3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

How To Recursion

1. Never forget the base case(s)!

2. If there already is a recursive formula: just implement it.

3. If you need to find the formula:

3.1 Find the base case(s).
3.2 Assume case for n-1 or n/2 or similar is given, then find out how to get case n.
3.3 Implement.

4. Never forget the base case(s)!

3

Power Function

Consider the following function:

int f(const int x, const int n) {

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

}

return x * f(x, n-1);

}

It computes

xn recursively.

How many (recursive) calls to f() are made to calculate x7?

f(x, 7) → f(x, 6) → f(x, 5) → f(x, 4) → f(x, 3) → f(x, 2) → f(x, 1).

4

Power Function

Consider the following function:

int f(const int x, const int n) {

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

}

return x * f(x, n-1);

}

It computes xn recursively.

How many (recursive) calls to f() are made to calculate x7?

f(x, 7) → f(x, 6) → f(x, 5) → f(x, 4) → f(x, 3) → f(x, 2) → f(x, 1).

4

Power Function

Consider the following function:

int f(const int x, const int n) {

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

}

return x * f(x, n-1);

}

It computes xn recursively.

How many (recursive) calls to f() are made to calculate x7?

f(x, 7) →

f(x, 6) → f(x, 5) → f(x, 4) → f(x, 3) → f(x, 2) → f(x, 1).

4

Power Function

Consider the following function:

int f(const int x, const int n) {

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

}

return x * f(x, n-1);

}

It computes xn recursively.

How many (recursive) calls to f() are made to calculate x7?

f(x, 7) → f(x, 6) →

f(x, 5) → f(x, 4) → f(x, 3) → f(x, 2) → f(x, 1).

4

Power Function

Consider the following function:

int f(const int x, const int n) {

if (n == 0) {

return 1;

} else if (n == 1) {

return x;

}

return x * f(x, n-1);

}

It computes xn recursively.

How many (recursive) calls to f() are made to calculate x7?

f(x, 7) → f(x, 6) → f(x, 5) → f(x, 4) → f(x, 3) → f(x, 2) → f(x, 1).

4

