Informatik - Exercise Session

OKAY, HUMAN.
HOH? 3
!

YLISTEN Up,

BEFURE YOU
HIT (OMPILE,

YOU KNOW WHEN YOURE
FALLING PSLEEE AND
YOU IMAGINE YOURSELF
WALKING OR
AV SOMETHING,

https://xkecd.com/371/

WD SUDDENLY YOU
NISSTER STUMBLE,
MD TOLT AWAKE?

YE}H! rﬁ

WELL, THATS WHAT A
SEGFAULT FEELS LIKE.

3
DOUBLE - CHECK. YOUR
POINTERS, OKAY?

 Sul



https://xkcd.com/371/

Pointer error example

Find mistakes in the following code and suggest fixes:

// PRE: len is the length of the memory block that starts at array
void testl(int* array, int len) {
int* fourth = array + 3;
if (len > 3) {
std: :cout << *fourth << std::endl;

+

for (int* p = array; p != array + len; ++p) {
std::cout << *p << std::endl;

}

Line 3 produces an error: Even if the pointer is not dereferenced, it must point into a
memory block or to the element just after its end. To fix this, move line 3 inside the
if branch.



Array memory error example

Find mistakes in the following code and suggest fixes:
1 // PRE: len >= 2
2 int* fib(int len) {

3 int* array = new int[len];

4 array[0] = 0; array[1] = 1;

5 for (int* p = array+2; p < array + len; ++p) *p = *x(p-2) + *(p-1);
6 return array;

7}

s void print(int* array, int len) {

9 for (int* p = array+2; p < array + len; ++p) std::cout << *p << " ';
10 }

11 void test2(int len) {

12 int* array = fib(len);

13 print(array, len);

14 }

array is leaked, to fix this, add a delete[] array somewhere.



Array memory error example reloaded

Find mistakes in the following code and suggest fixes:
1 // PRE: len >= 2

2 int* fib(int len) { /* ... */ }

3 void print(int* m, int len) {

4 for (int* p = m+2; p < m + len; ++p) std::cout << *p << " ',
5 delete m;

6 ¥

7 void test2(int len) {

8 int* array = fib(len);

9 print(array, len);

10 delete[] array;

11 }

On line 5, it should be delete[]. On line 10, we free the memory of array a second
time. To fix this, remove one of the delete[]’s.



Memory ownership

The main point of the last two examples is to show you that correctly allocating and
deallocating memory is a non-trivial task. This is especially a problem in large code
bases where objects are often deallocated far away from the location in which they
were created. Therefore, when dealing with dynamic memory it is useful to think in
terms of ownership. The core idea of ownership is that a memory location can have
only one owner at a time and that owner is responsible for deallocating it.

Example: The function £ib allocates an array and transfers the ownership of that array
to the caller. When test2 calls print, it transfers the ownership of the array to it.
When print finishes its work, we have a choice: either print deallocates the array or
returns its ownership to the caller. In the latter case, test2 is responsible for
deallocating the array.

Additionally: Memory can be owned not only by functions, but also by classes. For
example, the stack shown in the lecture owns the dynamically allocated memory.
Therefore, we should never deallocate that memory from outside of the stack.



