
Informatik - Exercise Session
Recursion and Custom Data Types



Concise Pre- and Postconditions

Consider this function from your exercises:

bool f(const int n) {

if (n == 0) return false;

return !f(n - 1);

}

What would be the appropriate pre- and postconditions as short as possible?
One example (pre: constraints for arguments, post: return value and side effects):

// PRE: n >= 0

// POST1: returns true if n is even, false otherwise

// POST2: returns if n is even // careful with this one

Try to keep your pre- and postconditions as short as possible, but still include all
relevant information without leaving room for wrong interpretation:
returns only if n is even vs. returns true if n is even

1



Tip: Rewriting for-loops

In certain conditions (to be precise: when iterators are implemented correctly for the
container, which you will see later), we can use a “shorter version” of the for-loop to
iterate over a container. We can rewrite this snippet:

for (int i = 0; i < c.size(); i++) {

c[i] = do_something(c[i]);

}

And without using indices, this becomes:

for (int& elem : c) {

elem = do_something(elem);

}

We read the colon as “in”: for elem in c, do something

And yes, this works with references as expected!
If you get errors that no ’begin’ function is available (or anything with ’iterator’), revert to normal for-loops.

2



Structs

Structs are custom data types (“containers”) for variables (and functions/“methods”,
as we will see later):

struct strange {

int n;

bool b;

std::vector<int> a = std::vector<int> (0);

};

int main () {

strange x = {1, true, {1,2,3}};

strange y = x; // all elements are copied

std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3

return 0;

}

3



Recursion Example: Power Set Explanation

The power set P(S) of a set S is the set of all its subsets Y ⊆ S .

P(∅) = {∅} = {{}}

P({a}) = {{}, {a}}

P({a, b}) = {{}, {a}, {b}, {a, b}}

S1 ⊂ S2 =⇒ P(S1) ⊂ P(S2)

4



Recursion Example: Power Set Implementation

General algorithm:

1. Select any x ∈ S

2. Build the reduced set S ′ := S \ {x}
3. Compute P(S ′)

4. Return P(S) = P(S ′) ∪ {Y ∪ {x} | Y ∈ P(S ′)}

Will this terminate?
No, we need a base case: If S = ∅, then return P(S) = {∅} = {{}}.

5


