Informatik - Exercise Session
Recursion and Custom Data Types

Concise Pre- and Postconditions

Consider this function from your exercises:
bool f(const int n) {
if (n == 0) return false;
return !'f(n - 1);

}

What would be the appropriate pre- and postconditions as short as possible?
One example (pre: constraints for arguments, post: return value and side effects):

// PRE: n >= 0
// POST1: returns true if n s even, false otherwise
// POST2: returns if n is even // careful with this one

Try to keep your pre- and postconditions as short as possible, but still include all
relevant information without leaving room for wrong interpretation:
returns only if n is even vs. returns true if n is even

Tip: Rewriting for-loops

In certain conditions (to be precise: when iterators are implemented correctly for the
container, which you will see later), we can use a “shorter version” of the for-loop to
iterate over a container. We can rewrite this snippet:
for (int i = 0; i < c.size(); i++) {

c[i] = do_something(c[i]);

And without using indices, this becomes:

for (int& elem : c) {
elem = do_something(elem);

¥

We read the colon as “in": for elem in ¢, do something

And yes, this works with references as expected!

If you get errors that no 'begin’ function is available (or anything with ’iterator’), revert to normal for-loops.

Structs

Structs are custom data types (“containers”) for variables (and functions/ “methods”,
as we will see later):
struct strange {

int n;

bool b;

std: :vector<int> a = std::vector<int> (0);

};

int main () {
strange x = {1, true, {1,2,3}};
strange y = x; // all elements are copied

std::cout << y.n << " " << y.a[2] << "\n"; // outputs: 1 3
return O;

Recursion Example: Power Set Explanation

The power set P(S) of a set S is the set of all its subsets Y C S.

P0) = {0} = {{}}
P({a}) = {{}.{a}}
P({a, b}) = {{},{a}, {b}, {a, b}}

51 C 52 — P(Sl) C P(52)

Recursion Example: Power Set Implementation

General algorithm:
1. Select any x € S
2. Build the reduced set S’ := S\ {x}
3. Compute P(S')
4. Return P(S) = P(SYU{Y U{x}|Y € P(S")}

Will this terminate?
No, we need a base case: If S =0, then return P(S) = {0} = {{}}.

