0 Misc

0.1 Number conversion

Numbers of different types in joint expressions are converted to the most general or “biggest”

one according to the following order:

CheatSheet by Florian Frauenfelder, Computer Science Math/Phys AS 2023

bool / char < int < unsigned int < float < double

0.2 Operator precedence

Operator Prec. | Dir.
g 17 L
at+, £O, [, ., —> 16 L
++a, -a, !, ~, (T), *p, &a, new, delete 15 R
*, /s h 13 L
a+b, a-b 12 L
<, <=, >, >= 9 L
==, I= 8 L
[7,6,5 [L
&& 4 L
I 3 L
=, +=, —=, *=, /=, k=, &=, =, |I= 2 R
0.3 Hex, decimal and binary

Hex | Bin | Dec Hex | Bin | Dec

0 [0000 | 0 8 | 1000 [8

1 | 0001 | 1 9 | 1001 | 9

2 [0010 | 2 a [1010 | 10

3 |ooil | 3 b | 1011 | 11

4 10100 [4 ¢ | 1100 | 12

5 0101 | 5 d | 1101 | 13

6 |0110 | 6 e | 1110 | 14

7 |o111 | 7 f 1111 | 15

Powers of 2:

O|1[2]3] 4] 5] 6] 7| 9] 10
L[2[4]8]16]32]64] 128256 | 512 | 1024
Multiples of 16:

3] 4] 5] 6] 7] 8| 9| 11| 12| 13|
48 [64 [80 | 96 | 112 [128 | 144 | 160 | 176 | 192 | 208 | 224 | 240 | 256

0.4 ASCII
Dec | Hex Dec | Hex Dec | Hex Dec | Hex Dec | Hex Dec | Hex

32| 20 48 | 30 | O 64 | 40 | @ 80 50 | P 96 | 60 | ¢ 112 | 70 | p
33 | 21 ! 49 | 31 1 65 | 41 A 81 51 Q 97 | 61 | a 1131 71 | q
34 | 22 " 50 | 32 | 2 66 | 42 | B 82 52 | R 98 | 62 | b 114 | 72 | r
35| 23 | # 51 33 |3 67 | 43 | C 83| 53 | S 99 | 63 | ¢ 115 | 73 |s
36| 24 |8 52| 34 | 4 68 | 44 | D 84 | 54 | T 100 | 64 | d 116 | 74 |t
371 25 | % 53] 35 |5 69 | 45 | E 8 | 55 | U 101 65 | e 117 | 75 | u
381 26 | & 54| 36 | 6 70| 46 | F 8 | 56 |V 102 | 66 | f 118 | 76 | v
39 | 27 | 55 | 37 |7 71| 47 | G 87 | 57 | W || 103 | 67 | g 119 | 77 | w
40 | 28 (56 | 38 | 8 72| 48 | H 88 | 58 | X 104 | 68 | h 120 | 78 | x
41 29 |) 571 39 |9 73] 49 | I 8| 59 |Y 105 | 69 | i 121 79 |y
42 | 2A | * 58 | 3A | : 74| 4A | 90 | 5A | Z 106 | 6A |j 122 | 7TA | z
43| 2B | + 59 | 3B | ; 751 4B | K 91 | 5B | | 107 | 6B | k 123 | 7B | {
44 | 2C |, 60 | 3C | < 76 | 4C | L 92 | 5C |\ 108 | 6C |1 124 | 7C | |
45 | 2D | - 61 | 3D | = 771 4D | M 93 | 5D |] 109 | 6D | m || 125 | 7D | }
46 | 2E | . 62 | 3E | > 78 | 4E | N 94 | BE | 7 110 | 6E | n 126 | TE | ~
47 | 2F |/ 63 | 3F | 7 79| 4F | O 95 | 5F | _ 111 | 6F | o 127 | 7F | DEL

The first characters (0 — 31 or 00 — 1F) are non-printable control characters.

1 Integers

1.1 Signed and negative integers

Negative integers can be displayed in binary using the following method: Write down all
possible binary combinations in order. Half of them start with 1, we use this first bit as the
sign. Now interpret all numbers with the first bit set as negative numbers, with the highest
one (11...11) corresponding to —1. This way, we get 2bits=1 _ 1 positive and 2”71 negative
numbers, with the remaining one being 0 2 00. .. 00.

Dec | Bin || Bin | Dec
000 || 000 0

001 || 111 | —1
010 || 110 | -2
011 || 101 | -3
100 | —4

Example with three bits:

w N = o

2 Logical values

2.1 Short-circuit evaluation

C++ uses so-called short-circuit evaluation:

e a && b: If a evaluates to false, b is not evaluated.

e a || b: If a evaluates to true, b is not evaluated.

3 Floating point numbers

3.1 Floating point system

We describe a floating point system
F(/Bapv €min, emax)

with four integers, 8 > 2 being the base, p > 1 the significand, emin the smallest and
€émax > €min the largest possible exponent. This system contains the numbers

+do.drds . .. dpfl . Be € F(ﬁ:l% €min, Cmax)

where do #0 and d; € {0,...,8 — 1} and e € {€min, - - - ; Emax }-

C++ uses F(2,24,—-126,127) for float and F(2,53,—1022,1023) for double. This means,
for float, which is 32-bit, we have 1 bit for the sign, 23 bits for the significand (because the
first bit is always one, we do not need to specify this) and 8 bit for the exponent, which means
256 different values, of which only 254 (127 — (—126) + 1) are used, and the two remaining
are reserved for special values like 0, 0o, ... and the like.

With these systems, we need to be careful, because many numbers do not have exact rep-
resentations in C++:

1.1 -
1.1

But, all integers can be converted to floating point numbers without loss of precision.
From this also result the following three important rules:

1. Don’t test rounded floating point numbers for equality.
2. Don’t add floating point numbers with big differences in the exponent.

3. Don’t subtract floating point numbers of similar exponents.

4 Recursion

4.1 Important concepts

A recursive function always needs a base case, and when the function is called, the base
case must be reached at some point. Otherwise, we get infinite recursion and stack-overflow
(— exit code -11 on Code Expert).

There are two main recursive strategies: ‘Decrease and conquer’ and ‘Divide and con-
quer’. We can get to the base case if we always decrease by one and calculate the problem
with n — 1, or we can get to the base case if we divide and calculate two remaining, smaller
problems with similar sizes, that do not depend on each other. Dividing often is more memory-
and time-efficient, but more complicated to write and understand. (With dividing also comes
the possibility of parallelizing.)

Recursive solutions often lead to more elegant, simpler and shorter solutions, while iterative
solutions are more efficient.

4.2 Examples from lecture slides
4.2.1 Factorial
Decrease and conquer:

unsigned int fac(unsigned int n) {

if (n <= 1)
return 1;
else

return n * fac(n-1);

4.2.2 Euclidean Algorithm
Decrease and conquer?

unsigned int gcd(unsigned int a, unsigned int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);

4.2.3 Bitstrings
Decrease and conquer:

void bs(std::string& bs, unsigned int i) {
if (i == bs.size()) {
std::cout << bs << "\n";
} else {
bs[i] = '0';
all_bs(bs, i+1);
bs[i] = '1';
all_bs(bs, i+1);

4.2.4 Vector-sum
Decrease and conquer:

int sum(const std::vector<int>& v, unsigned int from)
if (from >= v.size())
return O;
else
return v.at(from) + sum(v, from + 1);

Or Divide and conquer:

using uint = unsigned int;
int sum(const std::vector<int>& v, uint from, uint to) {
if (from > to)
return O;
else if (from == to)
return v.at(from);
else {
uint middle = (from + to) / 2;
return sum(v, from, middle) + sum(v, middle + 1, to);
}
}

5 Function overloading

Functions in C++ can be overloaded by defining a new function with the same name, but
a different signature, meaning a different number and/or order of arguments and/or argu-
ments with different types (the names of the arguments do not influence the signature). The
correct implementation of the function when called is chosen using the provided values for
the arguments.

Important: Defining two functions with the same signature results in a compiler error.

6 Custom data types

6.1 Operator overloading
With most operators, everything is straightforward. But:

T& operator+=(T& a, T b) {
// calculations
return a;

}

and similarly for -=, =, /= J=.
And:

// POST: T has been written to out
std::ostream& operator<<(std::ostream& out, T t) {
return out << /* something with t */;

}

and:

// PRE: 4n starts with something for t

// POST: t has been read from in

std::istream& operator>>(std::istream& in, T& t) {
return in >> /* something with t */;

}

With out- and input, best practice is to use similar to- and from-string-conversion formats
for consistency.

6.2 Structs and Classes

The only difference between a struct and a class is that in a struct, everything is public
by default, and in a class, everything is private by default.

6.3 Containers

The standard library of C++ contains many useful container implementations. Some exam-
ples are:

e array<T, size>, an ordered unsorted collection implemented as a static array (— con-
tiguous memory locations)

e vector<T>, an ordered unsorted collection implemented as a dynamic array (— contigu-
ous memory locations)

e 1ist<T>, an ordered unsorted collection implemented as a doubly linked list
e unordered_set<T>, an unordered duplicate-free collection implemented as a hash table

e set<T>, an ordered unsorted duplicate-free collection implemented as a red-black tree

6.4 lterators

Every container in C++ has its iterator with the following properties:

e it = c.begin() is an iterator pointing to the first element.

e it = c.end() is an iterator pointing behind the last element.
e ++it moves the iterator to the next element.

e *it de-references the iterator, returning the value of the element (see [pointers|).

Therefore, we can implement many helpful functions and methods with containers, without
knowing their exact implementation, just with iterators.

7 Dynamic Memory and pointers

“Pointers are like references that may point to nothing”.

7.1 Operators and types

e T* p means a pointer to data of type T.
e &a returns a pointer to a.

o *p de-references the pointer p and returns the value of the data behind the pointer.

7.2 const-(mad)ness

Rule: Read from right to left.

int const p1l pl is a constant integer

int const* p2 p2 is a pointer to a constant integer

int* const p3 p3 is a constant pointer to an integer

int const* const p4 | p4 is a constant pointer to a constant integer
We see that the “only” important thing is the placement of the *, everything else can
actually be swapped around.

Remark: const with methods in classes is different: T C::£() const =
method f does not change any of the values of the instance of C.

{} means that the

7.3 new and delete

Rule: For every new, there must be a corresponding delete.

T+ p = new T() returns a pointer to the created instance of T. The object lives until ex-
plicitly deleted with delete p.

But: delete p does not set p = nullptr!

Always be careful with new and delete: dangling pointers, zombie-memory, memory leaks,
etc ...

To simplify these problems, we can use std: :shared_ptr<T> or std: :unique_ptr<T>.

7.4 Rule of three

Rule: If a class implements one of

o Idestructor

e |COPY constructor|

e lassignment operator}

it also needs the other two!

7.4.1 Destructor

The destructor C: : ~C() contains the necessary corresponding delete statements for the new
statements in the constructors.

7.4.2 Copy constructor

The copy constructor C: :C(const C& x) constructs a “real” or deep copy of all member
variables.

7.4.3 Assignment operator

The assignment operator C& C: :operator=(const C& c) is very similar to the copy con-
structor, but first needs to deconstruct this and then copy from the other object.
Important: Make sure to not do anything in case of self-assignment.
The assignment operator can be implemented for example in the following two ways:

e Call destructor, (adapted) code from copy constructor, return *this

e Use temporary object with copy constructor from the other object, use std: :swap()
with all values on this and the temporary object, return *this

	Misc
	Number conversion
	Operator precedence
	Hex, decimal and binary
	ASCII

	Integers
	Signed and negative integers

	Logical values
	Short-circuit evaluation

	Floating point numbers
	Floating point system

	Recursion
	Important concepts
	Examples from lecture slides
	Factorial
	Euclidean Algorithm
	Bitstrings
	Vector-sum

	Function overloading
	Custom data types
	Operator overloading
	Structs and Classes
	Containers
	Iterators

	Dynamic Memory and pointers
	Operators and types
	|const|-(mad)ness
	|new| and |delete|
	Rule of three
	Destructor
	Copy constructor
	Assignment operator

